
1

Binary Search

A binary search or half-interval search algorithm finds the position of a specified input value

(the search "key") within an array sorted by key value. For binary search, the array should be

arranged in ascending or descending order. In each step, the algorithm compares the search

key value with the key value of the middle element of the array. If the keys match, then a

matching element has been found and its index, or position, is returned. Otherwise, if the

search key is less than the middle element's key, then the algorithm repeats its action on the

sub-array to the left of the middle element or, if the search key is greater, on the sub-array to

the right. If the remaining array to be searched is empty, then the key cannot be found in the

array and a special "not found" indication is returned.

A binary search halves the number of items to check with each iteration, so locating an item (or

determining its absence) takes logarithmic time. A binary search is a divide and conquer search

algorithm.

Example: The list to be searched: L = 1 3 4 6 8 9 11. The value to be found: X = 4.

 Compare X to 6. X is smaller. Repeat with L = 1 3 4.

 Compare X to 3. X is bigger. Repeat with L = 4.

 Compare X to 4. They are equal. We're done, we found X.

Recursive Algorithm

2

Equivalent Iterative Program

3

Time Complexity
Worst case performance

Best case performance

Average case performance

Worst case space complexity

