Binary Search

A binary search or half-interval search algorithm finds the position of a specified input value
(the search "key") within an array sorted by key value. For binary search, the array should be
arranged in ascending or descending order. In each step, the algorithm compares the search
key value with the key value of the middle element of the array. If the keys match, then a
matching element has been found and its index, or position, is returned. Otherwise, if the
search key is less than the middle element's key, then the algorithm repeats its action on the
sub-array to the left of the middle element or, if the search key is greater, on the sub-array to
the right. If the remaining array to be searched is empty, then the key cannot be found in the
array and a special "not found" indication is returned.

A binary search halves the number of items to check with each iteration, so locating an item (or
determining its absence) takes logarithmic time. A binary search is a divide and conquer search
algorithm.

Example: The list to be searched: L =134 6 89 11. The value to be found: X = 4.

Compare X to 6. X is smaller. Repeat with L =1 3 4.
Compare X to 3. X is bigger. Repeat with L = 4.
Compare X to 4. They are equal. We're done, we found X.

Recursive Algorithm

int binary_search(int A[], int key, int imin, int imax)
{
if (imax < imin) // testif arrayis empty
// set is empty, so return value showing not found
return KEY NOT _FOUND:;
else
{ int imid = midpoint(imin,imax);//calculate midpoint

if (A[imid] > key) //keyisinlower subset
return binary_search(4, key, imin, imid — 1);
else if (Alimid] < key) // key is in upper subset
return binary_search(4, key, imid + 1, imax);
else // key has been found
return imid;

Notes by Himanshu Kaushik | Data Structures & Algorithm |
Contact : 9560264237 | Himanshu2590@ gmail.com

A N items
Low Mid ‘ High
Key < record (mid) -,
Lovwar Mid High
Key = record (mid)
-.‘.cz Nj‘l‘q' |tE ms l‘"\.\'-
og,(n) ~'
Low Mid High

"\, Key > record I:miu:l;]a’

e m -

Low High

Equivalent Iterative Program

int binary_search(int A[], int key, int imin, int imax)
{
// continue searching while [imin, imax] is not empty
while (imax >= imin)
{
// calculate the midpoint for roughly equal partition
int imid = midpoint(imin, imax);
if (A[limid] == key) // key found at index imid
return imid; // determine which subarray to search
else if (A[imid] < key)
// change min index to search upper subarray
imin = imid + 1;

else // change max index to search lower subarray
imax = imid — 1;
}
// key was not found

return KEY NOT _FOUND:;
}

Notes by Himanshu Kaushik | Data Structures & Algorithm |
Contact : 9560264237 | Himanshu2590@ gmail.com

Time Complexity

Worst case performance O(logn)
Best case performance 0(1)
Average case performance O(logn)
Worst case space complexity 0(1)

Notes by Himanshu Kaushik | Data Structures & Algorithm |
Contact : 9560264237 | Himanshu2590@ gmail.com

